

C Programming
Quick Reference

Geetesh Singh | Joses Paul | Kailash Sridharan

Lakshmanan | Malar Vizhi | Muthukumar | Satish Ram

C Programming
Quick Reference

Geetesh Singh | Joses Paul | Kailash Sridharan

Lakshmanan | Malar Vizhi | Muthukumar | Satish Ram

Dedicated to Open source community

FOREWORD

 This book 'C Quick Reference', tries to ease the complexity of reading

ISO C Standard and gives a simpler sum-up of the standard with sample

codes and diagrams. It demystifies some of the deep 'C' secrets and

gives a greater insight on the design considerations of the language. It

details the definitions, part of the standard, and parallels the cases

which are unspecified and undefined in it.

This book is not only a good fit for beginners, but also becomes a handy

reference for the seasoned professionals.

- Deepak Soundararajan

ACKNOWLEDGMENTS

Many hearts and minds contributed to the completion of this

manuscript, while no list would be complete, it is my sincere pleasure to

acknowledge the guidance and assistance of individuals who provided

encouragement, knowledge and support along the way.

Deepak Soundararajan is a phenomenal mentor and human being. This effort

would have been impossible without his untiring support and mentorship.

This books would not have been possible without the support from

Zilogic Systems Pvt. Ltd. To me, Zilogic Systems has always been an open

place with open minded people, where we have been learning & developing

open source projects. This book is a just a result of one of those numerous

projects.

I’d also like to thank Vijay Kumar, Babusubashchandar and Raashid

Muhammed for providing insights on various topics in C. My Colleagues at

Zilogic remain the smartest dedicated & creative Engineers with whom I have

had the pleasure to work. None of this would have been possible, without the

phenomenal support and encouragement from PG Sir (P. Ganesan).

- Joses Paul

CONTENTS

Chapter 1. Data Type Specifiers 1

Chapter 2. Storage Class Specifiers 18

Chapter 3. Type Qualifiers 39

Chapter 4. Functions 47

Chapter 5. Statements 59

Chapter 6. Structure 68

Chapter 7. Bit Fields 74

Chapter 8. Unions 77

DATA TYPE SPECIFIERS

Data type specifiers in c are used to specify the type of data. In C it is necessary

to tell the compiler what type of data the variable contains.

1.1 Data Types :

There are four main data types that are inbuilt in C they are,

Int.

Char.

Float.

Double.

Type Modifiers :

Even though everything comes under data type specifiers, the programmers

call these type modifiers because it defines the amount of memory allocated to the

variables by modifying the original data types. For example, even though the memory

allocated for int is 2 bytes if it's a short int only one byte is allocated increasing the

efficiency of memory allocation.

The four type modifiers are:

Short.

Long.

Signed.

Unsigned.

Others:

void

char

_Bool

_Complex

struct-or-union-specifier

enum-specifier

2

Insight on C

Type Conversion:

C is extremely flexible in handling the interaction of different data types. For

example, with a few casts, you can easily multiply an unsigned character with a signed

long integer, add it to a character pointer, and then pass the result to a function

expecting a pointer to a structure. Programmers are used to this flexibility, so they tend

to mix data types without worrying too much about what's going on behind the scenes.

To deal with this flexibility, when the compiler needs to convert an object of one

type into another type, it performs what's known as a type conversion. There are two

forms of type conversions: explicit type conversions, in which the programmer

explicitly instructs the compiler to convert from one type to another by casting, and

implicit type conversions, in which the compiler does "hidden" transformations of

variables to make the program function as expected.

Conversion Rules

Integer Types: Value Preservation

An important concept in integer type conversions is the notion of a value-

preserving conversion. Basically, if the new type can represent all possible values of

the old type, the conversion is said to be value-preserving. In this situation, there's no

way the value can be lost or changed as a result of the conversion. For example, if an

unsigned char is converted into an int, the conversion is value-preserving because

an int can represent all of the values of an unsigned char.

Example:

Assuming you're considering a two’s complement machine, you know that an

8-bit unsigned char can represent any value between 0 and 255. You know that a 32-

bit int can represent any value between -2147483648 and 2147483647. Therefore,

there's no value the unsigned char can have that the int can't represent.

Correspondingly, in a value-changing conversion, the old type can contain

values that can't be represented in the new type. For example, if you convert an int

into an unsigned int, you have potentially created an intractable situation. The

unsigned int, on a 32-bit machine, has a range of 0 to 4294967295, and the int has a

3

Insight on C

range of -2147483648 to 2147483647. The unsigned int can't hold any of the negative

values a signed int can represent.

Integer Types: Widening

When you convert from a narrow type to a wider type, the machine typically

copies the bit pattern from the old variable to the new variable, and then sets all the

remaining high bits in the new variable to 0 or 1. If the source type is unsigned, the

machine uses zero extension, in which it propagates the value 0 to all high bits in the

new wider type. If the source type is signed, the machine uses sign extension, in

which it propagates the sign bit from the source type to all unused bits in the

destination type.

Integer Types: Narrowing

When converting from a wider type to a narrower type, the machine uses only

one mechanism: truncation. The bits from the wider type that don't fit in the new

narrower type are dropped. All narrowing conversions are value-changing because

you're losing precision.

Value preserving conversion, Zero extension

4

Insight on C

Value preserving conversion, Sign extension

Value changing conversion, Sign extension

Value changing conversion, Truncation

5

Insight on C

Integer Types: Signed and Unsigned

One final type of integer conversion to consider: If a conversion occurs between

a signed type and an unsigned type of the same width, nothing is changed in the bit

pattern. This conversion is value-changing.

Floating Point and Complex Types

The C standard's rules for conversions between real floating types and integer

types leave a lot of room for implementation-defined behaviors. In a conversion from

a real type to an integer type, the fractional portion of the number is discarded. If the

integer type can't represent the integer portion of the floating point number, the result

is undefined. Similarly, a conversion from an integer type to a real type transfers the

value over if possible. If the real type can't represent the integer's value but can come

close, the compiler rounds the integer to the next highest or lowest number in an

implementation-defined manner. If the integer is outside the range of the real type, the

result is undefined.

Conversions between floating point types of different precision are handled with

similar logic. Promotion causes no change in value. During a demotion that causes a

change in value, the compiler is free to round numbers, if possible, in an

implementation-defined manner. If rounding isn't possible because of the range of the

target type, the result is undefined.

Based on three important concepts compiler chooses which conversion to apply

in the context of C expressions:

6

Insight on C

● Simple conversions

● Integer promotions, and

● Usual arithmetic conversions.

1.Simple conversions

Simple conversions are C expressions that use straightforward applications of

conversion rules.

Casts

As you know, typecasts are C's mechanism for letting programmers specify an

explicit type conversion, as shown in this example:

(unsigned char) bob

Whatever type bob happens to be, this expression converts it into an unsigned char

type. The resulting type of the expression is unsigned char.

Assignments

Simple type conversion also occurs in the assignment operator. The compiler

must convert the type of the right operand into the type of the left operand, as shown

in this example:

 short int fred;

 int bob = -10;

 fred = bob;

For both assignments, the compiler must take the object in the right operand

and convert it into the type of the left operand. The conversion rules tell you that

conversion from the int bob to the short int fred results in truncation.

Function Calls: Prototypes

C has two styles of function declarations: the old K&R style, in which parameter

types aren't specified in the function declaration, and the new ANSI style, in which the

parameter types are part of the declaration. In the ANSI style, the use of function

prototypes is still optional, but it's common.

7

Insight on C

With the ANSI style, you typically see something like this:

int dostuff (int jim, unsigned char bob);

void func(void)

{

 char a=42;

 unsigned short b=43;

 long long int c;

 c=dostuff(a, b);

}

The function declaration for dostuff() contains a prototype that tells the compiler the

number of arguments and their types. The rule of thumb is that if the function has a

prototype, the types are converted in a straightforward fashion using the rules

documented previously. If the function doesn't have a prototype, something called the

default argument promotions kicks in (explained in "Integer Promotions").

The previous example has a character (a) being converted into an int (jim),

an unsigned short (b) being converted into an unsigned char (bob), and an int (the

dostuff() function's return value) being converted into a long long int (c).

Function Calls: return

return does a conversion of its operand to the type specified in the enclosing

function's definition. For example, the int a is converted into a char data type by return

char func(void) {

 int a=42;

 return a;

}

8

Insight on C

2.Integer Promotions

Integer promotions specify how C takes a narrow integer data type, such as a char

or short, and converts it to an int (or, in rare cases, to an unsigned int). This up-

conversion, or promotion, is used for two different purposes:

● Certain operators in C require an integer operand of type int or unsigned int.

For these operators, C uses the integer promotion rules to transform a narrower

integer operand into the correct typeint or unsigned int.

● Integer promotions are a critical component of C's rules for handling arithmetic

expressions, which are called the usual arithmetic conversions. For arithmetic

expressions involving integers, integer promotions are usually applied to both

operands.

Each integer data type is assigned what's known as an integer conversion rank.

These ranks order the integer data types by their width from lowest to highest. The

signed and unsigned varieties of each type are assigned the same rank. The following

abridged list sorts integer types by conversion rank from high to low.

● long long int, unsigned long long int

● long int, unsigned long int

● unsigned int, int

● unsigned short, short

● char, unsigned char, signed char

● _Bool

What happens when applying integer promotion?

First, if the variable isn't an integer type or a bit field, the promotions do nothing.

Second, if the variable is an integer type, but its integer conversion rank is greater than

or equal to that of an int, the promotions do nothing. Therefore, ints, unsigned ints,

long ints, pointers, and floats don't get altered by the integer promotions.

So, the integer promotions are responsible for taking a narrower integer type or bit

field and promoting it to an int or unsigned int. This is done in a straightforward fashion:

9

Insight on C

If a value-preserving transformation to an int can be performed, it's done. Otherwise,

a value-preserving conversion to an unsigned int is performed. In practice, this means

almost everything is converted to an int, as an int can hold the minimum and maximum

values of all the smaller types.

Integer Promotion Applications

Unary + Operator

The unary + operator performs integer promotions on its operand. For example, if the

bob variable is of type char, the resulting type of the expression (+bob) is int, whereas

the resulting type of the expression (bob) is char.

Unary - Operator

The unary - operator does integer promotion on its operand and then does a negation.

Regardless of whether the operand is signed after the promotion, a two’s complement

negation is performed, which involves inverting the bits and adding 1.

Unary ~ Operator

The unary ~ operator does a one’s complement of its operand after doing an

integer promotion of its operand. This effectively performs the same operation on both

signed and unsigned operands for two’s complement implementations: It inverts the

bits.

Bitwise Shift Operators

The bitwise shift operators >> and << shift the bit patterns of variables. The

integer promotions are applied to both arguments of these operators, and the type of

the result is the same as the promoted type of the left operand, as shown in this

10

Insight on C

Example:

char a = 1;

char c = 16;

int bob;

bob = a << c;

a is converted to an integer, and c is converted to an integer. The promoted type of

the left operand is int, so the type of the result is an int. The integer representation of

a is left-shifted 16 times.

Switch Statements

Integer promotions are used in switch statements. The general form of a switch

statement is something like this:

switch (controlling expression)

{

case (constant integer expression): body;

break;

default: body;

break;

}

The integer promotions are used in the following way: First, they are applied to

the controlling expression, so that expression has a promoted type. Then, all the

integer constants are converted to the type of the promoted control expression.

11

Insight on C

Function Invocations

Older C programs using the K&R semantics don't specify the data types of

arguments in their function declarations. When a function is called without a prototype,

the compiler has to do something called default argument promotions. Basically,

integer promotions are applied to each function argument, and any arguments of the

float type are converted to arguments of the double type. Consider the following

example:

int jim(bob)

char bob;

{

printf("bob=%d\n", bob);

}

int main(int argc, char **argv)

{

char a=5;

jim(a);

}

In this example, a copy of the value of a is passed to the jim() function. The char type

is first run through the integer promotions and transformed into an integer. This integer

is what's passed to the jim() function. The code the compiler emits for the jim() function

is expecting an integer argument, and it performs a direct conversion of that integer

back into a char format for the bob variable.

3.Usual Arithmetic Conversions

In many situations, C is expected to take two operands of potentially divergent

types and perform some arithmetic operation that involves both of them. The C

standards spell out a general algorithm for reconciling two types into a compatible type

12

Insight on C

for this purpose. This procedure is known as the usual arithmetic conversions. The

goal of these conversions is to transform both operands into a common real type,

which is used for the actual operation and then as the type of the result. These

conversions apply only to the arithmetic types integer and floating point types. The

following sections tackle the conversion rules.

 Rule 1: Floating Points Take Precedence

Floating point types take precedence over integer types, so if one of the

arguments in an arithmetic expression is a floating point type, the other argument is

converted to a floating point type. If one floating point argument is less precise than

the other, the less precise argument is promoted to the type of the more precise

argument.

 Rule 2: Apply Integer Promotions

If you have two operands and neither is a float, you get into the rules for

reconciling integers. First, integer promotions are performed on both operands. This

is an extremely important piece of the puzzle! If you recall from the previous section,

this means any integer type smaller than an int is converted into an int, and anything

that's the same width as an int, larger than an int, or not an integer type is left alone.

Here's a brief example:

unsigned char jim = 255;

unsigned char bob = 255;

if ((jim + bob) > 300) do_something();

In this expression, the + operator causes the usual arithmetic conversions to

be applied to its operands. This means both jim and bob are promoted to ints, the

addition takes place, and the resulting type of the expression is an int that holds the

result of the addition (510). Therefore, do_something() is called, even though it looks

like the addition could cause a numeric overflow. To summarize: Whenever there's

13

Insight on C

arithmetic involving types narrower than an integer, the narrow types are promoted to

integers behind the scenes. Here's another brief example:

unsigned short a=1;

if ((a-5) < 0) do_something();

Intuition would suggest that if you have an unsigned short with the value 1, and

it's subtracted by 5, it underflows around 0 and ends up containing a large value.

However, if you test this fragment, you see that do_something() is called because both

operands of the subtraction operator are converted to ints before the comparison. So

a is converted from an unsigned short to an int, and then an int with a value of 5 is

subtracted from it. The resulting value is -4, which is a valid integer value, so the

comparison is true. Note that if you did the following, do_something() wouldn't be

called:

unsigned short a=1;

a=a-5;

if (a < 0) do_something();

The integer promotion still occurs with the (a-5) , but the resulting integer value

of -4 is placed back into the unsigned short a . As you know, this causes a simple

conversion from signed int to unsigned short, which causes truncation to occur, and a

ends up with a large positive value. Therefore, the comparison doesn't succeed.

 Rule 3: Same Type After Integer Promotions

If the two operands are of the same type after integer promotions are applied,

you don't need any further conversions because the arithmetic should be

straightforward to carry out at the machine level. This can happen if both operands

have been promoted to an int by integer promotions, or if they just happen to be of the

same type and weren't affected by integer promotions.

14

Insight on C

 Rule 4: Same Sign, Different Types

If the two operands have different types after integer promotions are applied,

but they share the same signed-ness, the narrower type is converted to the type of the

wider type. In other words, if both operands are signed or both operands are unsigned,

the type with the lesser integer conversion rank is converted to the type of the operand

with the higher conversion rank.

Note that this rule has nothing to do with short integers or characters because

they have already been converted to integers by integer promotions. This rule is more

applicable to arithmetic involving types of larger sizes, such as long long int or long

int. Here's a brief example:

int jim =5;

long int bob = 6;

long long int fred;

fred = (jim + bob)

Integer promotions don't change any types because they are of equal or higher

width than the int type. So this rule mandates that the int jim be converted into a long

int before the addition occurs. The resulting type, a long int, is converted into a long

long int by the assignment to fred.

 Rule 5: Unsigned Type Wider Than or Same Width as Signed Type

The first rule for this situation is that if the unsigned operand is of greater integer

conversion rank than the signed operand, or their ranks are equal, you convert the

signed operand to the type of the unsigned operand. This behavior can be surprising,

as it leads to situations like this:

int jim = -5;

if (jim < sizeof (int))

do_something();

15

Insight on C

The comparison operator < causes the usual arithmetic conversions to be

applied to both operands. Integer promotions are applied to jim and to sizeof(int) , but

they don't affect them. Then you continue into the usual arithmetic conversions and

attempt to figure out which type should be the common type for the comparison. In this

case, jim is a signed integer, and sizeof(int) is a size_t , which is an unsigned integer

type. Because size_t has a greater integer conversion rank, the unsigned type takes

precedence by this rule. Therefore, jim is converted to an unsigned integer type, the

comparison fails, and do_something() isn't called. On a 32-bit system, the actual

comparison is as follows:

if (4294967291 < 4)

do_something();

 Rule 6: Signed Type is Wider Than Unsigned Type, Value Preservation is

Possible

If the signed operand is of greater integer conversion rank than the unsigned

operand, and a value-preserving conversion can be made from the unsigned integer

type to the signed integer type, you choose to transform everything to the signed

integer type, as in this example:

long long int a=10;

unsigned int b= 5;

(a+b);

The signed argument, a long long int, can represent all the values of the

unsigned argument, an unsigned int, so the compiler would convert both operands to

the signed operand's type: long long int.

 Rule 7: Signed Type is Wider Than Unsigned Type, Value Preservation is

Impossible

There's one more rule: If the signed integer type has a greater integer

conversion rank than the unsigned integer type, but all values of the unsigned integer

16

Insight on C

type can't be held in the signed integer type, you have to do something a little strange.

You take the type of the signed integer type, convert it to its corresponding unsigned

integer type, and then convert both operands to use that type.

 Here's an example:

unsigned int a = 10;

long int b=20;

(a+b);

For the purpose of this example, assume that on this machine, the long int size

has the same width as the int size. The addition operator causes the usual arithmetic

conversions to be applied. Integer promotions are applied, but they don't change the

types. The signed type (long int) is of higher rank than the unsigned type (unsigned

int). The signed type (long int) can't hold all the values of the unsigned type (unsigned

int), so you're left with the last rule. You take the type of the signed operand, which is

a long int, convert it into its corresponding unsigned equivalent, unsigned long int, and

then convert both operands to unsigned long int. The addition expression, therefore,

has a resulting type of unsigned long int and a value of 30.

Enumeration constant (enum):
Syntax:

Enum-specifier:
enum identifier opt {enumerator-list}
enum identifier opt {enumerator-list,}
enum identifier

Enumerator-list:
Enumerator
enumerator-list, enumerator

enumerator:

enumeration-constant
enumeration-constant = constant-expression

17

Insight on C

An Enumeration is a list of constant integer values, as in

enum boolean { NO, YES };

The first name in the enum has value 0, the next 1 and so on, unless explicit values
are specified. If not all values are specified, unspecified values continue the
progression from the last specified value, as in the below example:

enum months {
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }; /*FEB
= 2, MAR = 3 and so on…*/

Names in different enumerations must be distinct. Values need not be distinct in the
same enumerations as below example:

#include<stdio.h>

enum number {zero = 0, one, Zero = 0};
int main (void)
{
 printf("a:%d\nb:%d\nc:%d\n", a,b,c);
 return 0;
}
/*’zero’ and ‘Zero’ has same value it's not a problem but you can't create an another
enum which have the same name in the number enum

Like: enum variable { zero = 0, x, y, z};
you can't use the same name ‘zero’ again in another enum in same program */

Example:

#include <stdio.h>

enum escapes { BELL = '\a', BACKSPACE, HORIZONTAL_TAB, LINE_FEED,
VERTICAL_TAB, };
int main (void)
{
 printf("a%cb%c%cd%c", LINE_FEED, BACKSPACE, BELL, LINE_FEED);
 return 0;
}
/* In this program the ascii value of ‘\a’ is assigned to BELL in the enum and the values
continue the progression from the last specified ascii value.
*/

18

Insight on C

 STORAGE CLASS SPECIFIERS

2.1. STORAGE CLASS

The storage class determines the part of memory where storage is allocated

for an object (particularly variables and functions) and how long the storage

allocation continues to exist.

➔ Tells the compiler how to store a variable.

➔ All variables defined in a C program get some physical location in memory

where variable's value is stored. (Memory and CPU Register).

The storage class of a variable in C determines the following for a variable

1. Scope

2. Linkage

3. Storage duration (Lifetime)

2.1.1. SCOPE: (C11 6.2.1)

Scope describes the region or regions of a program that can access an identifier. A

typical C variable has one of the following scopes:

● Block scope - A block is a region of code contained within an opening brace

and the matching closing brace. For instance, the entire body of a function is a

block. A variable defined inside a block has block scope, and it is visible from

the point it is defined until the end of the block containing the definition.

● Function scope - It applies just to labels used with goto statements. This

means that even if a label first appears inside an inner block in a function, its

scope extends to the whole function. It would be confusing if you could use the

same label inside two separate blocks, and function scope for labels prevents

this from happening.

● Function prototype scope - Function prototype scope runs from the point the

variable is defined to the end of the prototype declaration.

19

Insight on C

● File scope - A variable with its definition placed outside of any function has file

scope. It is visible from the point it is defined to the end of the file containing the

definition. file scope variables are also called global variables .

#include <stdio.h>

int units = 0; /* a variable with file scope */

int mighty(int, int); /*Function prototype scope*/

int main(void)

{

units++;

mighty(2,3);

}

int mighty(int a,int b)

{

int c; /*Block scope*/

if(c==0) {

printf("c=%d\n",a+b);

goto link; /*Function scope*/

}

{

link:

 printf("Hello\n");

}

2.1.2. Translation Units and Files

After C preprocessing stage the compiler sees a single file containing

information from your source code file and all the header files. This single file is called

a translation unit.

20

Insight on C

If your program consists of several source code files, then it will consist of

several translation units, with each translation unit corresponding to a source code file

and its included files.

2.1.3. LINKAGE: (C11 6.2.2)

 A C variable has one of the following linkages:

● External linkage - File scope- can be used anywhere in a multifile program.

● Internal linkage - File scope - Single translation unit.

● No linkage - Variables with block scope, function scope, or function proto-

type scope.

int giants = 5; // file scope, external linkage

static int dodgers = 3; // file scope, internal linkage

func1() //external linkage

{

}

int main()

{

int a=10; // Block scope, No linkage

extern int b; // Block scope, external linkage

}

21

Insight on C

2.1.4. STORAGE DURATION : (C11 6.2.4)

Scope and linkage describe the visibility of identifiers. An object has a storage

duration that determines its lifetime. A typical C object has one of the following four

storage durations:

● Static storage duration - If an object has static storage duration, it exists

throughout program execution. Variables with file scope have static storage

duration. Note that for file scope variables, the keyword static indicates the

linkage type, not the storage duration. A file scope variable declared using

static has internal linkage, but all file scope variables, using internal linkage or

external linkage, have static storage duration.

● Thread storage duration - Thread storage duration comes into play in

concurrent programming, in which program execution can be divided into

multiple threads. An object with thread storage duration exists from when it’s

declared until the thread terminates. Such an object is created when a

declaration that would otherwise create a file scope object is modified with the

keyword _Thread_local . When a variable is declared with this specifier, each

thread gets its own private copy of that variable.

● Automatic storage duration - Variables with block scope normally have

automatic storage duration. These variables have memory allocated for them

when the program enters the block in which they are defined, and the memory

is freed when the block is exited. The memory used for automatic variables can

be reused. For example, after a function call terminates, the memory it used for

its variables can be used to hold variables for the next function that is called.

➢ It is possible, however, for a variable to have block scope but static storage

duration. To create such a variable, declare it inside a block and add the

keyword static to the declaration:

22

Insight on C

#include<stdio.h>

int a; //File scope,External linkage,Static storage duration

static int b; //File scope,Internal linkage,Static storage duration

void more (int number)

{

int index; // Block scope, Automatic duration

static int ct = 0; // Block scope, Static duration

return 0;

}

➢ Here the variable ct is stored in static memory; it exists from the time the

program is loaded until the program terminates. But its scope is confined to the

more() function block.

● Allocated storage duration -The object is allocated and deallocated per

request by using dynamic memory allocation functions

(malloc,calloc,realloc,free). The duration of the object is decided by the

programmer.

2.2. Storage-class-specifier: (C11 6.7.1)

The storage class specifiers are

typedef

extern

static

_Thread_local

auto

register

http://en.cppreference.com/w/cpp/memory

23

Insight on C

typedef, _Thread_local are maybe discussed later and now only discussing

about extern, static, auto, register.

Constraints

> At most, one storage-class specifier may be given in the declaration specifiers

in a declaration, except that _Thread_local may appear with static or extern.

> In the declaration of an object with block scope, if the declaration specifiers

include _Thread_local, they shall also include either static or extern. If _Thread_local

appears in any declaration of an object, it shall be present in every declaration of that

object.

> _Thread_local shall not appear in the declaration specifiers of a function

declaration.

1.2.1 AUTO

A variable belonging to the automatic storage class has automatic storage

duration, block scope, and no linkage. By default, any variable declared in a block or

function header belongs to the automatic storage class.

int loop(int n)

 {

 int m; // m in scope

 scanf("%d", &m);

 {

 int i; // both m and i in scope

 for (i = m; i < n; i++)

 puts("i is local to a sub-block\n");

 }

return m; // m in scope, i gone

}

24

Insight on C

Undefined behavior :

If an object that has automatic storage duration is not initialized explicitly, its

value is indeterminate.When the value of an object is used while it is indeterminate the

behavior is undefined.

2.2.2 STATIC

Variables with file scope have static storage duration. Static keyword with file

scope variable indicates the internal linkage. Static keyword with auto variable

indicates Scope of the variable is within the function or block but lifetime is throughout

the program.

Unspecified behavior :

All objects with static storage duration shall be initialized (set to their initial

values) before program startup. The manner and timing of such initialization are

otherwise unspecified.

Undefined behavior :

The same identifier has both internal and external linkage in the same

translation unit.

#include<stdio.h>

int a;

static int a;

main()

...

2.2.3 REGISTER

Variables are normally stored in computer memory. Register variables are

stored in the CPU registers or, more generally, in the fastest memory available, where

they can be accessed and manipulated more rapidly than regular variables.

25

Insight on C

Because a register variable may be in a register rather than in memory, you

can’t take the address of a register variable. In most other respects, register variables

are the same as automatic variables.

It is not compulsory for the compiler to store the data in the RAM , depending

on the availability and feasibility the compiler will decide whether to store the variable

or not.

Register variables are used inside the functions or blocks only. Scope of the

Register variable is within the function or block and lifetime is within the function or

block. No Linkage.

That is, they have block scope, no linkage, and automatic storage duration. A

variable is declared by using the storage class specifier register

int main(void)

{

register int quick;

…..

}

Note:

● Since Register keyword is only a suggestion one can never be sure if the

variable will be stored in register or not.

● The maximum length of the variable must be the length of the register (i.e) if

the register size is 64 bit the maximum size must be 64 bit.

2.2.4. EXTERN

 DEFINITION-:

The extern keyword means "declare without defining". In other words, it is a

way to explicitly declare a variable, or to force a declaration without a definition. It is

26

Insight on C

also possible to explicitly define a variable, i.e. to force a definition.It is done by

assigning an initialization value to a variable.

In the C programming language, an external variable is a variable defined

outside any function block. On the other hand, a local (automatic) variable is a variable

defined inside a function block.

HOW ?

To understand how external variables relate to the extern keyword, it is

necessary to know the difference between defining and declaring a variable.

When a variable is defined, the compiler allocates memory for that variable and

possibly also initializes its contents to some value.

When a variable is declared, the compiler requires that the variable be defined

elsewhere. The declaration informs the compiler that a variable by that name and type

exists, but the compiler does not need to allocate memory for it since it is allocated

elsewhere.

The extern keyword means "declare without defining". In other words, it is a

way to explicitly declare a variable, or to force a declaration without a definition. It is

also possible to explicitly define a variable, i.e. to force a definition. It is done by

assigning an initialization value to a variable.

To said simply, while using the extern keyword for a variable, we are telling the

compiler to don’t allocate the memory for this variable, because this variable is present

in the memory somewhere else.

If neither the extern keyword nor an initialization value are present, the

statement can be either a declaration or a definition. It is up to the compiler to analyse

the modules of the program and decide.

Extern variables are used inside the functions or outside the functions. Scope

of the Extern variable is for all translation unit and lifetime is throughout the program.

Linkage is for all translation unit.

27

Insight on C

If you want to use global variable i of file1.c in file2.c, then below are the points to

remember:

1. main function shouldn't be there in file2.c

2. now global variable i can be shared with file2.c by two ways:

a) by declaring with extern keyword in file2.c i.e extern int i;

b) by defining the variable i in a header file and including that header file in

file2.c.

Example 1:-

File1.c

/* Variable defined here*/

int global_variable = 37; /* Definition checked against declaration */

File2.c

#include <stdio.h>

extern int global_variable; /*Declaration of global_variable*/

int main (void)

{

 global_variable++;

 printf("%d\n",a);

 return 0;

}

$ gcc -Wall file1.c file2.c -o file

$./file

38

28

Insight on C

Example 2:-

file1.c

/* Variable defined here*/

int global_variable = 37; /* Definition checked against declaration */

extern.h

extern int global_variable; /*Declaration of global_variable*/

file2.c

#include <stdio.h>

#include “extern.h”

int main (void)

{

 global_variable++;

 printf("%d\n",a);

 return 0;

}

Terminal command:

$ gcc -Wall file1.c file2.c -o file

$./file

38

29

Insight on C

Undefined behavior : (C11, J2, P-563)

 An identifier with external linkage is used, but in the program there does not

exist exactly one external definition for the identifier, or the identifier is not used and

there exist multiple external definitions for the identifier (C11 6.9).

Example. 1:-

In file1.c is An identifier with external linkage is used (extern int

global_variable;). The external definition for the identifier(global_variable) is used in

both the file2.c and file3.c files. So it is undefined.

file1.c

#include <stdio.h>

extern int global_variable;
int main (void)
{

}

file2.c

int global_variable;

file3.c

int global_variable;

30

Insight on C

SUMMARY

Keyword Storage Scope Life time Initial Value

AUTO Memory Local / Block

Scope

Exists as long as

Control remains in

the block

Garbage

REGISTER CPU Register Local / Block

Scope

Local to the block in

which variable is

declared.

Garbage

EXTERN Memory Global / File

Scope

Exists as long as

variable is running

Retains value within

the function

Zero

STATIC Memory File Scope/

Block Scope

Exists throughout the

program

Zero

31

Insight on C

2.2.4 TYPEDEF

The typedef specifier introduce a new name for a type rather than reserving
space for a variable and is called as storage class specifier only for syntactic
convenience.. In some ways, a typedef is similar to macro text replacement—it doesn't
introduce a new type, just a new name for a type, but there is a key difference
explained later.

Typedef looks exactly like a variable declaration, Instead of the declaration
saying "this name refers to a variable of the stated type," the typedef keyword doesn't
create a variable, but causes the declaration to say "this name is a synonym for the
stated type."

Typedef creates aliases for data types rather than new data types. You can
typedef any type.

 typedef int *IP;
Just write a declaration for a variable with the type you desire. Have the name

of the variable be the name you want for the alias. Write the keyword 'typedef ' at the
start, as shown above. A typedef name cannot be the same as another identifier in the
same block.

Typedef with pointers:
typedef int *IP; /* IP: Pointer to int */
typedef int (*FP); /* FP: Pointer to function returning int */
typedef int F(int); /* F: Function with one int parameter, returning int
*/
IP ip; /* ip: Pointer to int */
IP fip(); /* fip: function returning pointer to int */
FP fp; /* fp: Pointer to function returning int */
F *fp2; /* fp2: Pointer to a function taking an int parameter and returning an int */

Typedef names for structure:
Struct MyStruct {
 int data1;
 char data2;
};
typedef struct MyStruct newtype;
newtype a; /* struct MyStruct a; */

Typedef names for arrays:
typedef double A5[5]; /* A5: 5 element array of double*/
typedef int A[]; /* A: array of int*/
A5 a5;
A a; /* a: array of int*/
A *ap3[3]; /* ap3: 3-element array of pointers to array of int*/

32

Insight on C

If a typedef name denotes a variable length array type, the length of the array is fixed
at the time the typedef name is defined, not each time it is used:

{
 int n=10;
 typedef int Array[n];
 n=25;
 Array a;
}

Typedef names for Function type:
typedef double Func();

 Func becomes a synonym for function returning double with this declaration.
Func can be used to declare pointers to function type, array of pointers to function
type.

Func *f_ptr, *f_array[];
Array of functions cannot be declared. It is invalid.

Func f_array[10];
Func cannot be used to define functions.

Func f1 (int x)
 {

 …..
 }

#define
#define is called as the macro replacement in c. When a macro is defined the

given identifier is replaced by the replacement during the preprocessor state.the
syntax is

#define <text> <replacement>

Example program

#include <stdio.h>

#define max(a,b) ((a) > (b) ? a:b)

Int main()
{
Int r;
r=max(6,5);
printf(“the maximum of two nos is: %s , &r);
}

The above program is a simple implementation of a macro to find the largest of two
numbers.from the above program it is evident that the usage of macro greatly
increases the readability of the program.

33

Insight on C

Difference between typedef and #define:
#define is a C-directive which is also used to define the aliases for various data types
similar to typedef but with the following differences –

 You can extend a macro typename with other type specifiers, but not a typedef
'd typename. That is,

#define peach int
unsigned peach i; /* works fine */
typedef int banana;
unsigned banana i; /* Bzzzt! illegal */

 Combining type qualifier with typedef names is allowed.

 Second, a typedef 'd name provides the type for every declarator in a
declaration.

#define int_ptr int *

int_ptr chalk, cheese;

After macro expansion, the second line effectively becomes:
int * chalk, cheese;

This makes chalk and cheese as different as chutney and chives: chalk is a
pointer-to-an-integer, while cheese is an integer. In contrast, a typedef like this:

typedef char * char_ptr;
char_ptr Bentley, Rolls_Royce;

declares both Bentley and Rolls_Royce to be the same. The name on the front
is different, but they are both a pointer to a char.

 typedef is limited to giving symbolic names to types only whereas #define can
be used to define alias for values as well, q., you can define 1 as ONE etc.

 typedef interpretation is performed by the compiler whereas #define
statements are processed by the preprocessor.

34

Insight on C

2.3. FAQs:

2.3.1. EXTERN:

Q1. What does extern mean in a function declaration? (cfaq 1.11)

Ans : Extern is significant only with data declarations. In function declarations, it can

be used as a stylistic hint to indicate that the function's definition is probably in another

source file, but there is no formal difference between

extern int f();

and

int f();

Q2. I have an extern array which is defined in one file, and used in another:

file1.c: file2.c:

int array[] = {1, 2, 3}; extern int array[];

Why doesn't sizeof work on array in file2.c? (cfaq 1.24)

Ans: An extern array of unspecified size is an incomplete type; you cannot apply sizeof

to it. sizeof operates at compile time, and there is no way for it to learn the size of an

array which is defined in another file.

You have three options:

1. Declare a companion variable, containing the size of the array, defined and

initialized (with sizeof) in the same source file where the array is defined:

file1.c: file2.c:

int array[] = {1, 2, 3}; extern int array[];

int arraysz = sizeof(array); extern int arraysz;

35

Insight on C

2. #define a manifest constant for the size so that it can be used consistently in

the definition and the extern declaration:

 file1.h:

 #defineARRAYSZ 3

 extern intarray[ARRAYSZ];

file1.c: file2.c:

#include "file1.h" #include "file1.h"

int array[ARRAYSZ];

3. Use some sentinel value (typically 0, -1, or NULL) in the array's last element,

so that code can determine the end without an explicit size indication:

file1.c: file2.c:

int array[] = {1, 2, 3, -1}; extern int array[];

(Obviously, the choice will depend to some extent on whether the array was already

being initialized; if it was, option 2 is poor.)

36

Insight on C

2.3.2. STATIC:

Q1. Do all declarations for the same static function or variable have to include

the storage class static? (cfaq 1.10)

Ans: The language in the Standard does not quite require this (what's most important

is that the first declaration contain static), but the rules are rather intricate, and are

slightly different for functions than for data objects. (There has also been a lot of

historical variation in this area.) Therefore, it's safest if static appears consistently in

the definition and all declarations.

Q2. What am I allowed to assume about the initial values of variables and arrays

which are not explicitly initialized?

If global variables start out as ``zero'', is that good enough for null pointers and

floating-point zeroes? (cfaq 1.30)

Ans: Uninitialized variables with static duration (that is, those declared outside of

functions, and those declared with the storage class static), are guaranteed to start

out as zero, just as if the programmer had typed ``= 0'' or ``= {0}''. Therefore, such

variables are implicitly initialized to the null pointer if they are pointers, and to 0.0 if

they are floating-point.

 Variables with automatic duration (i.e. local variables without the static storage

class) start out containing garbage, unless they are explicitly initialized. (Nothing useful

can be predicted about the garbage.) If they do have initializers, they are initialized

each time the function is called (or, for variables local to inner blocks, each time the

block is entered at the top[footnote]).

These rules do apply to arrays and structures (termed aggregates); arrays and

structures are considered ``variables'' as far as initialization is concerned. When an

automatic array or structure has a partial initializer, the remainder is initialized to 0,

just as for statics. [footnote] See also question (cfaq 1.31).

Finally, dynamically-allocated memory obtained with malloc and realloc is likely

to contain garbage, and must be initialized by the calling program, as appropriate.

37

Insight on C

Memory obtained with calloc is all-bits-0, but this is not necessarily useful for pointer

or floating-point values (see cfaq question 7.31, and section 5).

Q3. I have a function which accepts, and is supposed to initialize, a pointer:

void f (int *ip)

 {

 static int dummy = 5;

 ip = &dummy;

 }

But when I call it like this:

 int *ip;

 f(ip);

the pointer in the caller remains unchanged. (cfaq 4.8)

Ans: Are you sure the function initialized what you thought it did? Remember that

arguments in C are passed by value. In the code above, the called function alters only

the passed copy of the pointer. To make it work as you expect, one fix is to pass the

address of the pointer (the function ends up accepting a pointer-to-a-pointer; in this

case, we're essentially simulating pass by reference):

 void f(ipp)

 int **ipp;

 {

 static int dummy = 5;

 *ipp = &dummy;

 }

38

Insight on C

 ...

 int *ip;

 f(&ip);

Another solution is to have the function return the pointer:

 int *f()

 {

 static int dummy = 5;

 return &dummy;

 }

 ...

 int *ip = f();

39

Insight on C

Type Qualifiers

Type qualifiers in C. (C11 6.7.3)

● const

● volatile

● restrict

● _atomic.

VOLATILE

3.1.1 DEFINITION:

Volatile in C is a type qualifier that requests the compiler to suppress

optimizations on the object.

3.1.2 HOW?

The purpose of volatile is to force an implementation to suppress optimization

that could otherwise occur. Consider an embedded device with memory-mapped I/O,

a pointer to its register can be qualified as volatile, in order to prevent compiler from

optimizing, so that the register is accessed every time.

3.1.3 USES:

Volatile declaration may be used to describe an object corresponding to

memory-mapped input/output port or an object accessed by an asynchronously

interrupting function. Actions on objects so declared shall not be ‘‘optimized out’’ by

an implementation or reordered except as permitted by the rules for evaluating

expressions. (C11 6.7.3)

3.1.4 SYNTAX:

 <type qualifier> <type specifier> <variable name>

 volatile int a;

3.1.5 UNDEFINED BEHAVIOR:

 If an attempt is made to refer to an object defined with a volatile-qualified type

through use of an lvalue with non-volatile type, behavior is undefined. (C11 6.7.3)

40

Insight on C

3.1.6 IMPLEMENTATION SPECIFIC:

There is no implementation-independent semantics for volatile object. (K&R A8.2)

CONSTANT

3.2.1 DEFINITION:

The qualifier const can be applied to the declaration of any variable to specify

that its value will not be changed (Which depends upon where const variables are

stored, we may change value of const variable by using pointer). The result is

undefined if an attempt is made to change a const.

Key: A Constant object may be initialized but not thereafter assigned to.

3.2.2 HOW ?

Constant qualifier simply suggests compiler that programmer has no intention

to change it, but other programs may or may not change that object.

3.2.3 SYNTAX:

<type qualifier> <type specifier> <variable name>

const int a;

3.2.4 UNDEFINED:

If an attempt is made to modify an object defined with a const-qualified type

through use of an lvalue with non-const-qualified type, the behavior is undefined.

(C11 6.7.3)

volatile int n = 1; // object of volatile-qualified type

int* p = (int*)&n;

int val = *p; // undefined behavior

41

Insight on C

13down voteaccepted

● In this case, what will most often happen is that the answer will be "yes." A

variable, const or not, is just a location in memory, and you can break the rules

of constness and simply overwrite it. (Of course this will cause a severe bug if

some other part of the program is depending on its const data being constant!)

● However in some cases -- most typically for const static data -- the compiler

may put such variables in a read-only region of memory. MSVC, for example,

usually puts const static ints in .text segment of the executable, which means

that the operating system will throw a protection fault if you try to write to it, and

the program will crash.

● In some other combination of compiler and machine, something entirely

different may happen. The one thing you can predict for sure is that this pattern

will annoy whoever has to read your code.

IMPLEMENTATION SPECIFIC:

The implementation may place a const object that is not volatile in a read-only

region of storage. Moreover, the implementation need not allocate storage for such an

object if its address is never used.

#include <stdio.h>

 int main()

 {

 const int a = 12;

 int *p;

 p = &a;

 *p = 70;

 }

42

Insight on C

CONSTANT AND VOLATILE TOGETHER

An object marked as const volatile will not be permitted to be changed by the

code (an error will be raised due to the const qualifier) - at least through that particular

name / pointer.

The volatile part of the qualifier means that the compiler cannot optimize or

reorder access to the object.

In an embedded system, this is typically used to access hardware registers that

can be read and are updated by the hardware, but make no sense to write to (or might

be an error to write to).

An example might be the status register for a serial port. Various bits will

indicate if a character is waiting to be read or if the transmit register is ready to accept

a new character (ie., - it's empty). Each read of this status register could result in a

different value depending on what else has occurred in the serial port hardware.

It makes no sense to write to the status register (depending on the particular

hardware spec), but you need to make sure that each read of the register results in an

actual read of the hardware - using a cached value from a previous read won't tell you

about changes in the hardware state.

quick example:

If these pointers were not marked as being volatile, a couple problems might occur:-

unsigned int const volatile *status_reg; // assume these are assigned to point to the
unsigned char const volatile *recv_reg; // correct hardware addresses

#define UART_CHAR_READY 0x00000001

int get_next_char()
{
 while ((*status_reg & UART_CHAR_READY) == 0) {
 // do nothing but spin
 }
return *recv_reg;
}

43

Insight on C

● the while loop test might read the status register only once, since the compiler

could assume that whatever it pointed to would never change (there's nothing

in the while loop test or loop itself that could change it). If you entered the

function when there was no character waiting in UART hardware, you might

end up in an infinite loop that never stopped even when a character was

received.

● the read of the receive register could be moved by the compiler to before the

while loop - again because there's nothing in the function that indicates that

*recv_reg is changed by the loop, there's no reason it can't be read before

entering the loop.

The volatile qualifiers ensure that these optimizations are not performed by the

compiler.

44

Insight on C

FAQs:

1. What's the difference between

 const MAXSIZE = 100; and #define MAXSIZE 100.

 A preprocessor #define gives you a true compile-time constant. In C, const gives you a run-

time object which you're not supposed to try to modify; ``const'' really means ``read only''

#define:

● operates at compile time

● consumes no memory (though this is not too important)

● can use in compile-time constant expression

● uses different syntax; can make mistake with ;

● can't create pointers to

● no type checking

const:

● operates at run time

● consumes memory (though this is not too important)

● can't use in compile-time constant expression

● uses consistent syntax

● can create pointers to

● does type checking

2. I don't understand why I can't use const values in initializers & array dimension in

 const int n = 5;

 int a[n];

The const qualifier really means ``read-only''; an object so qualified is a runtime

object which cannot (normally) be assigned to. The value of a const-qualified object is

therefore not a constant expression in the full sense of the term, and cannot be used for

array dimensions, case labels, and the like. (C is unlike C++ in this regard.) When you need

a true compile-time constant, use a preprocessor #define (or perhaps an enum).

45

Insight on C

Experimentals

VOLATILE

Consider these code samples:

//file1.c

#include<stdio.h>

#include<time.h>

int main(void){

 long int i,j;

 double on,off,out;

 on=clock(); // on ← the starting clock time.

 for (i=0;i<90000;i++)

 for (j=0;j<50000;j++);

 off=clock(); // off ← the ending clock time.

 out=(off-on)/CLOCKS_PER_SEC;

 printf("Total Time taken ----> %lf \n",out);

 return 0;

}

//file2.c

#include<stdio.h>

#include<time.h>

int main(void){

 volatile long int i,j; // volatile qualified type.

 double on,off,out;

 on=clock(); // on ← the starting clock time.

 for (i=0;i<90000;i++)

 for (j=0;j<50000;j++);

 off=clock(); // off ← the ending clock time.

 out=(off-on)/CLOCKS_PER_SEC;

 printf("Total Time taken ----> %lf \n",out);

 return 0;

}

Note: Here, file2.c has a variable which is qualified as Volatile, now take a look at the output

given by both the programs.

46

Insight on C

It can be seen from the output that:

file1.c gives the output as “Total time taken is 0.000001”. while file2.c which has the volatile

qualified variable gives the output as “Total time taken is 7.358232”. Although, the Gcc

optimization level was specified as O2.

Perhaps, this is because of the fact that volatile suppresses the optimization, thus the loop

gets executed.

47

Insight on C

FUNCTIONS

Functions: - (K&R 1.7)

In C, A function provides a convenient way to encapsulate some computation,

which can then be used without worrying about the implementation. C makes the use

of functions easy, convenient and efficient.

We have used functions like printf, scanf, etc. These are the C library functions.

To develop own function, function definition has this form:(syntax)

return-type function-name(parameter declarations, if any)

{

 declarations

 statements

}

Return-type - what type of data is going to return by the function to the called one.

We will use parameter for a variable named in the parenthesized list in a function

definition, and argument for the value used in a call of the function.

Why Functions?

- Maintenance

- Readability

- Size

- Boostspeed

Functions break large computing tasks into smaller ones, and enable people to build

on what others have done instead of starting over from scratch. (K&R 4.0)

48

Insight on C

Function Calls (K&R A7.3.2)

A function call is a postfix expression, called the function designator, followed

by parentheses containing a possibly empty, comma-separated list of assignment

expressions, which constitute the arguments to the function.

If the postfix expression consists of an identifier for which no declaration exists

in the current scope, the identifier is implicitly declared as if the declaration had been

given in the innermost block containing the function call.

extern int identifier () ;

The postfix expression must be of type "pointer to function returning T," :for

some type T, and the value of the function call has type T.

The term argument is used for an expression passed by a function call; the

term parameter is used for an input object (or its identifier) received by a function

definition, or described in a function declaration. The terms "actual argument

(parameter)" and "formal argument (parameter)" respectively are sometimes used for

the same distinction.

int main(){

 multi(20); // Argument or Actual

argument

}

void multi(int number) { // Parameter or Formal

argument

 printf(“%d”,number*number);

}

49

Insight on C

Constraints: (c11, 6.5.2.2)

1. The expression that denotes the called function shall have type pointer to

function returning void or returning a complete object type other than an array

type.

2. If the expression that denotes the called function has a type that includes a

prototype, the number of arguments shall agree with the number of parameters.

Each argument shall have a type such that its value may be assigned to an

object with the unqualified version of the type of its corresponding parameter.

Argument promotions:

If the expression that denotes the called function has a type that does not

include a prototype, the integer promotions are performed on each argument, and

arguments that have type float are promoted to double. These are called the default

argument promotions.

Function Declarators

In a new-style function declaration T D where D has the form

D 1 (parameter-type-list)

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of

the identifier of D is "type-modifier function with arguments parameter-type-list

returning T."

In the new-style declaration, the parameter list specifies the types of the

parameters. As a special case, the declarator for a new-style function with no

parameters has a parameter type list consisting solely of the keyword void. If the

parameter type list ends with an ellipsis ", ...", then the function may accept more

arguments than the number of parameters explicitly described.

The only storage-class specifier that shall occur in a parameter declaration is register.

50

Insight on C

what is ellipsis?

But first, let’s identify what a va_list is and How to use variable argument lists (va_list)

in C? Think about the printf() C function.

printf(“Hello there! I like the numbers %d, %d and %d\n”,1,3,7);

Obviously the output of that function call would be:

Hello there! I like the numbers 1, 3 and 7

But the key point here is, the printf() function can accept a VARYING NUMBER OF

ARGUMENTS. That’s because it uses a va_list.

If you look at the signature for printf(), it looks like this:

int printf(char * format, …);

So the argument list for printf() has 2 main things:

char * format – a regular string

and a second special argument, … (3 dots, just like that)

… is called an “ellipsis”, and it means, in plain English: “any number of optional

arguments can go here.”

So somehow, in the innermost bowels of printf(), is some sticky code that somehow

retrieves each one of the the list of args you’re passing in, in the place of the “…”.

Cool! So is it possible for us to write our functions that have their own sticky code that

can process a set of VARIABLE ARGUMENTS???

YES YOU CAN. And it is actually simple!

51

Insight on C

Variable Argument Lists: < stdarg.h> (K&R B7)

The header <stdarg.h> provides facilities for stepping through a list of function

arguments of unknown number and type.

Suppose lastarg is the last named parameter of a function f with a variable

number of arguments. Then declare within f a variable ap of type va_list that will point

to each argument in turn:

va_list ap;

ap must be initialized once with the macro va_start before any unnamed argument is

accessed:

va_start(va_list ap, lastarg);

Thereafter, each execution of the macro va_arg will produce a value that has

the type and value of the next unnamed argument, and will also modify ap so the next

use of va_arg returns the next argument:

type va_arg (va_list ap, type);

The macro

void va_end(va_list ap);

must be called once after the arguments have been processed but before f is exited.

RULES you must know in order to be able to use "..." in one of your own

functions:

 1) The ... MUST appear exactly as ... It cannot be "..." (with the quotes), '...', or

 anything else weird.

 2) The ... __MUST go last__ in the ARGUMENT LIST

 3) There MUST be at least one mandatory, Non-optional argument, that comes

before the ...

52

Insight on C

#include <stdio.h>

#include <stdarg.h>

int addThemAll(int numargs, ...)

 // So this function can accept a variable number of arguments. No limits.

{

 va_list listPointer;

 // POINTER that will be used to point first element of the VARIABLE ARGUMENT LIST.

 va_start(listPointer, numargs);

 // Make listPointer point to the first argument in the list

 // Notice that numargs is the LAST MANDATORY ARGUMENT

 // NEXT, we're going to start to actually retrieve the values from the va_list itself.

 int i;

 int sum = 0;

 for(i = 0 ; i < numargs; i++)

 {

 // GET an arg. YOU MUST KNOW THE TYPE OF THE ARG TO RETRIEVE IT FROM THE

va_list.

 int arg = va_arg(listPointer, int);

 printf(" The %dth arg is %d\n", i, arg);

 sum += arg;

 }

 printf("--");

 printf("END OF ARGUMENT LIST\n\n");

 // FINALLY, we clean up by saying va_end(). Don't forget to do this

 // BEFORE the addThemAll() function returns!

53

Insight on C

 va_end(listPointer);

 printf("The total sum was %d\n\n", sum);

 return sum;

}

int main()

{

 printf("Calling 'addThemAll(3, 104, 29, 46);' . . .\n");

 addThemAll(3, 104, 29, 46);

 printf("Calling 'addThemAll(8, 1, 2, 3, 4, 5, 6, 7, 8);' . . .\n");

 addThemAll(8, 1, 2, 3, 4, 5, 6, 7, 8);

 return 0;

}

Function Definition (c11, 6.9.1)

Syntax

function-definition:

declaration-specifiers declarator declaration-list opt compound-statement

declaration-list:

declaration

declaration-list declaration

A function definition specifies the name of the function, the types and number

of parameters it expects to receive, and its return type. A function definition also

includes a function body with the declarations of its local variables, and the statements

that determine what the function does.

54

Insight on C

The only storage-class specifiers that can modify a function declaration are

extern and static. The extern specifier signifies that the function can be referenced

from other files; that is, the function name is exported to the linker. The static specifier

signifies that the function cannot be referenced from other files; that is, the name is

not exported by the linker. If no storage class appears in a function definition, extern

is assumed. In any case, the function is always visible from the definition point to the

end of the file.

extern int max(int a, int b)

{

return a > b ? a : b;

}

extern is the storage-class specifier and int is the type specifier;

max(int a, int b) is the function declarator; and { return a > b ? a : b; } is the function

body.

The following similar definition uses the identifier-list form for the parameter

declarations:

extern int max(a, b)

int a, b;

{

return a > b ? a : b;

}

Here int a, b; is the declaration list for the parameters.

55

Insight on C

The return statement:

Constraints (c11, 6.8.6.4)

1. A return statement with an expression shall not appear in a function whose

return type is void. A return statement without an expression shall only appear

in a function whose return type is void.

Semantics

1. A return statement terminates execution of the current function and returns

control to its caller. A function may have any number of return statements.

2. If a return statement with an expression is executed, the value of the expression

is returned to the caller as the value of the function call expression. If the

expression has a type different from the return type of the function in which it

appears, the value is converted as if by assignment to an object having the

return type of the function.

Function Pointer

- Pointer used to store address of function or pointer that points to function.

- Address of function is address of first instruction in the function.

- We can use a pointer to function to dereference and execute the function.

Example:

#include<stdio.h>

int Add(int a,int b)

{

 return a+b;

}

int main()

{

 int c;

 int (*p) (int,int); // Declaration of pointer

 p=&Add;

 c=(*p)(2,3); // Dereferencing and executing function

 printf(“%d\n”,c);

}

56

Insight on C

- In this example p is a pointer to a function that takes two int arguments and

returns an integer.

- Function type and parameter list type should be same for the pointer.

- Instead of giving p=&Add you can give p=Add.

- p(2,3) does the same function as (*p)(2,3).

#include<stdio.h>

void PrintHello()

{

 printf(“Hello\n”);

}

int main()

{

 void (*ptr) (); // Declaration of pointer

 ptr=PrintHello;

 ptr();

}

- ptr is pointer to function that returns nothing and no parameters.

- The char should be passed as pointer.

#include<stdio.h>

void PrintHello(char *name)

{

 printf(“Hello %s\n”,name);

}

int main()

{

 void (*ptr) (*char); // Declaration of pointer

 ptr=PrintHello;

 ptr(“Tom”);

}

57

Insight on C

Use cases of Function pointer:

- Function pointers can be passed as arguments to function.

- Function would receive function pointer as argument can callback function that

pointer will point to.

#include<stdio.h>

void A()

{

 printf(“Hello\n”);

}

void B(void (*ptr)()) // Function pointer as

argument

{

ptr(); // Callback function that ptr

points to

}

int main()

{

 void (*p) ()=A; // Declaration of

pointer

 B(p);

}

Undefined Behaviour:

1. If the number of arguments does not equal the number of parameters, the

behavior is undefined.

(c11, 6.5.2.2, p6)

#include <stdio.h>

int main (void)

{

 fun1(5,76,79);

 return 0;

58

Insight on C

}

void fun1(int a,int b,int c,int d)

{

 printf("%d\n%d\n%d\n%d\n",a,b,c,d);

}

2. If the function is defined with a type that includes a prototype, and either the

prototype ends with an ellipsis (, ...) --or the types of the arguments after**-

promotion are not compatible with the types of the parameters, the behavior is

undefined.

3. If the function is defined with a type that does not include a prototype, and the

types of the arguments after promotion are not compatible with those of the

parameters after promotion, the behavior is undefined, except for the following

cases:

● one promoted type is a signed integer type, the other promoted

type is the corresponding unsigned integer type, and the value is

representable in both types;

● both types are pointers to qualified or unqualified versions of a

character type or void.

4. Two declarations of the same object or function specify types that are not

compatible.

59

Insight on C

Statements
DEFINITION:

A statement specifies an action to be performed.

Different Statements & blocks in C are. (C11 6.8)

● labeled-statement

● compound-statement

● expression-statement

● selection-statement

● iteration-statement

● jump-statement

; → Statement terminator. (K&R 3.1)

Labeled Statement

SYNTAX:

 identifier : statement

case constant-expression : statement

default : statement

Any statement (but not a declaration) may be preceded by any number of

labels, each of which declares identifier to be a label name, which must be unique

within the enclosing function (in other words, label names have function scope).

Example:

switch(Grade) {

 case 'A' : printf("Excellent\n"); break;

 case 'B' : printf("Good\n"); break;

 case 'C' : printf("OK\n"); break;

 case 'D' : printf("You must do better than this\n"); break;

 default : printf("What is your grade anyway?\n"); break;

 }

http://en.cppreference.com/w/c/language/scope

60

Insight on C

Compound Statement

A compound statement, or block, is a brace-enclosed sequence of statements

and declarations.

SYNTAX:

{ statement | declaration...(optional) }

if (expr) // start of if-statement

{ // start of block

 int n = 1; // declaration

 printf("%d\n", n); // expression statement

} // end of block, end of if-statement

Note:- Each compound statement introduces its own block scope.

int main(void)

{ // start of block

 { // start of block

 puts("hello"); // expression statement

 int n = printf("abc\n"); // declaration, prints "abc", stores 4 in n

 int a[n*printf("1\n")]; // allocates 8*sizeof(int)

 printf("%zu\n", sizeof(a)); // expression statement

 } // end of block, scope of n and a ends

 int n = 7; // n can be reused

}

http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/puts
http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/fprintf

61

Insight on C

Expression Statement
SYNTAX:

 expression(optional) ;

Most statements in a typical C program are expression statements, such as

assignments or function calls.

puts("hello"); // expression statement

char *s;

while (*s++ != '\0')

 ; // null statement

Selection Statement
SYNTAX:

 if (expression) statement

 if (expression) statement else statement

switch (expression) statement

switch (expr)

{

 int i = 4;

f(i);

case 0:

i = 17; /* falls through into default code */

default:

printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the

block) but is never initialized, and thus if the controlling expression has a nonzero

value, the call to the printf() function will access an indeterminate value. Similarly,

the call to the function f() cannot be reached.

62

Insight on C

Iteration Statement

The iteration statements repeatedly execute a statement until condition false.

SYNTAX:

while (expression) statement

do statement while (expression) ;

for (init_clause ; expression(optional) ; expression(optional)) statement

for (expression[opt];expression[opt];expression[opt]) statement.

 Jump Statement
SYNTAX:

 break ;

 continue ;

 return expression(optional) ;

 goto identifier ;

for(i = 0; i < n; i++){

 for(j = 0; j < m; j++){

 if(a[i] == b[j]){

 goto found; // Jumps to ‘found’ - out of all loops.

 else

 continue;

 }

}

}

found:

return 0;

63

Insight on C

Experimentals

Switch-Case

Take a look at this code:

#include <stdio.h>

void foo(void)

{

 printf("Function foo");

}

int main(void)

{

 float x = 1.1;

 switch (x) // Only int or char or enum.

 {

 int a=10; // a will not be initialized.

 printf("printing Ten - %d",a); // will not be executed.

 fun(); // will not be executed.

 case 1.1: printf("Case 1.1 ???"); // only int or char or enum.

 break;

 default: printf("Choice other than 1, 2 and 3");

 break;

 case 1: printf("case 1"); // break ??

 case 2: printf("case 2");

 case 3: printf("case 3");

 case 2-1: printf("case 1 Again"); // duplicate case.

 }

 return 0;

}

64

Insight on C

Output:

- The expression used in switch must be integral type (int, char and enum).

Any other type of expression is not allowed.

- Maximum Size of int that can be used is: sizeof(unsigned long int).

- default block can be placed anywhere.

- Remember to use break statement, if required.

- Two Case labels cannot be same. Error: duplicate case value.

Now, take a look at this code:

#include <stdio.h>

int main(void)

{

 int value = 0;

 switch (value) {

 case 0:

 int i = 1; // i is defined here

 printf("value:%d\n",i);

 break;

 default:

65

Insight on C

 printf("Enter correct value\n");

 break;

 }

return 0;

}

Output:

Solution: put braces inside case.

case 0: {

 int i = 1; // i is defined here

 printf("value:%d\n",i);

 }

 break;

Why?

Case blocks can only contain statements.

int i =1; // is not a statement.

{ int i =1;} // is a compound statement.

66

Insight on C

Return statement

Take a look at this code:

#include <stdio.h>

int welcome()

{

 return printf("welcome ");

}

int func()

{

 printf("zilogic systems\n");

 return printf("to all%d\n",welcome());

}

int main(void)

{

 printf("hello%d\n",func());

 return 0;

}

Output:

67

Insight on C

If - Conditional Statement

#include <stdio.h>

int main(void){

 int condition = 0;

 if(condition)

 if(1)

 printf("true");

 else

 printf("else");

 return 0;

}

Output:

Why?

Here, else is associated with the latest if condition.

Equivalent Code

if(condition){

 if(1)

 printf("true");

 else

 printf("else");

}

Solution: Use Braces to associate the if and else, respective.

68

Insight on C

Structure
Origin: PASCAL - “Records”

Structure is a collection of one or more variables of same of different types, grouped

under a same name. (K&R Chapter 6)

● A structure or union shall not contain a member with incomplete or function type

(hence,a structure shall not contain an instance of itself, but may contain a

pointer to an instance of itself).(C11 6.7.2.1 point no.3)

WHY?

Organize complicated data.

SYNTAX:

Struct <struct_tag_name(opt)>{

 Member1;

 Member2;

 :

} < struct_variable_name(opt) >;

Struct tag {

 int x;

 int y;

 int z;

 } variable1, variable2;

Initialization:

struct pinball {

 int right;

 int left;

 long score;

 }p1,p2;

p1.right=40;

p1.left =60;

p2.right=50;

p2.left=50;

 struct pinball {

 int right;

 int left;

 long score;

 };

struct pinball

p1={40,60,100};

struct pinball

p2={.score=100};

struct pinball {

 int right;

 int left;

 long score;

}p1={40,60,100}

69

Insight on C

Size of Structure:

gcc on Linux - x64

Int main(void){

struct findsize{

 int a;

 char b;

 char c;

 int d;

 }var;

printf(“size of var =

%d”,sizeof(var));

return 0

}

gcc on Linux - x64

int main(){

struct findsize{

int a;

char b;

short c;

char d;

int e;

}var;

printf("size of var =");

printf("%lu \n",sizeof(var));

> Generally it is prefered to club the types together inside a structure to minimise the

wastage of memory.

Structure will tend allocate memory size of biggest member, to other members.It can

be seen in the example below that, Since the structure has a member of type long.

Short is given 8 bytes.Then the char c and d are put in the already available memory.

70

Insight on C

gcc on Linux - x64

int main(){

struct findsize{

long a;

short b;

char c;

char d;

}var;

printf("size of var =");

printf("%lu \n",sizeof(var));

Nested structure:-

struct outer {

 int a;

 struct inner {

 long b;

 }var1;

 }var2;

 printf(“%lu\n”,sizeof(var2)); //size of the structure is 16 bytes in gcc

Ways to manipulate a structure. (using a function);

- Pass elements of the structure.

- Pass entire structure.

- Pass a pointer to structure.

71

Insight on C

Pointer to a Structure

If a large structure is to be passed to a function, it is generally more efficient to pass a

pointer than to copy the whole structure. (K&R 6.2)

struct { // Structure.

 int a;

}var;

struct point *p = &var; // pointer to the structure.

(*p).a

 p->a //accessing the member of the structure.

Example:

#include<stdio.h>

struct arith{

int a;

int b;

}one={1,1};

void add(struct arith *ptr){

int sum;

sum = (ptr->a) + (ptr->b);

printf("sum = %d",sum);

}

int main(){

struct arith *ptr = &one;

add(ptr);

return 0;

}

 /* Output : Sum = 2 */

72

Insight on C

FAQ:

Why is my compiler leaving holes in structures, wasting space and preventing ̀ `binary''

I/O to external data files? Can I turn this off, or otherwise control the alignment of

structure fields?

Many machines access values in memory most efficiently when the values are

appropriately aligned. (For example, on a byte-addressed machine, short ints of size

2 might best be placed at even addresses, and long ints of size 4 at addresses which

are a multiple of 4.) Some machines cannot perform unaligned accesses at all, and

require that all data be appropriately aligned.

Suppose you have this structure:

 struct {

 char a[3];

 short int b;

 long int c;

 char d[3];

 };

Now, you might think that it ought to be possible to pack this structure into memory

like this:

 +-------+-------+-------+-------+

 | a | b |

 +-------+-------+-------+-------+

 | b | c |

 +-------+-------+-------+-------+

 | c | d |

 +-------+-------+-------+-------+

73

Insight on C

But it's much, much easier on the processor if the compiler arranges it like this:

 +-------+-------+-------+

 | a |

 +-------+-------+-------+

 | b |

 +-------+-------+-------+-------+

 | c |

 +-------+-------+-------+-------+

 | d |

 +-------+-------+-------+

In the ``packed'' version, notice how it's at least a little bit hard for you and me to see

how the b and c fields wrap around? In a nutshell, it's hard for the processor, too.

Therefore, most compilers will ``pad'' the structure (as if with extra, invisible fields) like

this:

 +-------+-------+-------+-------+

 | a | pad1|

 +-------+-------+-------+-------+

 | b | pad2 |

 +-------+-------+-------+-------+

 | c |

 +-------+-------+-------+-------+

 | d | pad1|

 +-------+-------+-------+-------+

74

Insight on C

Bit Fields

When storage space is at premium, it may be necessary to pack several objects into a single

machine word. Henceforth, comes the use of bit-fields.

gcc on Linux - x64

int main(){

struct findsize{

int a:8;

int b:8;

Int c:8;

}var;

printf("size of var =");

printf("%lu \n",sizeof(var));

● A member may be declared to consist of a specified number of bits (including

a sign bit, if any). Such a member is called a bit-field) its width is preceded by

a colon. (C11 6.7.2.1 point no.9)

● The expression that specifies the width of a bit-field shall be an integer constant

expression with a non-negative value that does not exceed the width of an

object of the type that would be specified where the colon and expression

omitted.

 (C11 6.7.2.1 point no.4)

● A bit-field shall have a type that is a qualified or unqualified version of _Bool,

signed int, unsigned int, or some other implementation-defined type.

 (C11 6.7.2.1 point no.5)

Note:- The unary &(address-of) operator cannot be applied to a bit-field object; thus,

there are no pointers to or arrays of bit-field objects.

75

Insight on C

1) Multiple adjacent bit fields are permitted to be (and usually are) packed together:-

#include <stdio.h>

struct S {

 // will usually occupy 4 bytes:

 // 5 bits: value of b1

 // 11 bits: unused

 // 6 bits: value of b2

 // 2 bits: value of b3

 // 8 bits: unused

 unsigned b1 : 5, : 11, b2 : 6, b3 : 2;

};

int main(void)

{

 printf("%zu\n",sizeof(struct S)); // usually prints 4

}

2) The special unnamed bit field of width zero breaks up padding: it specifies that the next bit

field begins at the beginning of the next allocation unit:-

#include <stdio.h>

struct S {

 // will usually occupy 8 bytes:

 // 5 bits: value of b1

 // 27 bits: unused

 // 6 bits: value of b2

 // 15 bits: value of b3

 // 11 bits: unused

 unsigned b1 : 5;

 unsigned :0; // start a new unsigned int

 unsigned b2 : 6;

 unsigned b3 : 15;

};

int main(void)

{

 printf("%zu\n", sizeof(struct S)); // usually prints 8

}

http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/fprintf

76

Insight on C

IMPLEMENTATION DEFINED:

● An implementation may allocate any addressable storage unit large enough to

hold a bit-field. If enough space remains, a bit-field that immediately follows

another bit-field in a structure shall be packed into adjacent bits of the same

unit. If insufficient space remains, whether a bit-field that does not fit is put into

the next unit or overlaps adjacent units is implementation-defined.

(C11 6.7.2.1 pt-11)

C-FAQ:-

Why do people use explicit masks and bit-twiddling code so much, instead of

declaring bit-fields?

● Bit-fields are thought to be nonportable, although they are no less portable than

other parts of the language. (You don't know how big they can be, but that's

equally true for values of type int. You don't know by default whether they're

signed, but that's equally true of type char. You don't know whether they're laid

out from left to right or right to left in memory, but that's equally true of the bytes

of all types, and only matters if you're trying to conform to externally-imposed

storage layouts, which is always nonportable.

● Bit-fields are inconvenient when you also want to be able to manipulate some

collection of bits as a whole (perhaps to copy a set of flags). You can't have

arrays of bit-fields. Many programmers suspect that the compiler won't

generate good code for bit-fields (historically, this was sometimes true).

UNDEFINED:

● If the struct-declaration-list does not contain any named members, either

directly or via an anonymous structure or anonymous union, the behavior is

undefined. (C11 6.7.2.1)

77

Insight on C

Unions

● A union type describes an overlapping non empty set of member objects, each

of which has an optionally specified name and possibly distinct type.

 (C11 6.2.5 pt.20)

● A union is a type consisting of a sequence of members whose storage overlaps

(as opposed to struct, which is a type consisting of a sequence of members

whose storage is allocated in an ordered sequence). The value of at most one

of the members can be stored in a union at any one time.

 Example:-

 union pad {

 char c[5];

 float f;

 } p = {.f = 1.23};

 printf("size of union of char[5] and float is %zu\n", sizeof p);

OUTPUT: size of union of char[5] and float is 8

union S {

 uint32_t u32;

 uint16_t u16[2];

 uint8_t u8;

 } s = {0x12345678};

 printf("Union S has size %zu and holds %x\n", sizeof s, s.u32);

 s.u16[0] = 0x0011;

// printf("s.u8 is now %x\n", s.u8); // unspecified, typically 11 or 00

// printf("s.u32 is now %x\n", s.u32); // unspecified, typically 12340011 or 00115678

OUTPUT :- Union S has size 4 and holds 12345678

http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/io/fprintf

78

Insight on C

UNSPECIFIED: -

When a value is stored in a member of an object of union type, the bytes of the object

representation that do not correspond to that member but do correspond to other

members take unspecified values. (C11 6.2.6.1-point no.7)

